If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-8k=10
We move all terms to the left:
3k^2-8k-(10)=0
a = 3; b = -8; c = -10;
Δ = b2-4ac
Δ = -82-4·3·(-10)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{46}}{2*3}=\frac{8-2\sqrt{46}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{46}}{2*3}=\frac{8+2\sqrt{46}}{6} $
| 16-47=4(x-2)-7 | | -7+3y=~ | | 2x-3+4=21 | | -4t=-9−5t | | 15=3+2w | | 10c=7+9c | | 4(20-m)-3m=17 | | 6/4x+1=3x+8 | | 5x-4=3(2-4x) | | 80+-7m=17 | | -(4-h)=3h | | 425+t=750 | | 10-5x=20. | | m2=65 | | 12w-15=45 | | 84-2x=58 | | 16-4y=2y+4 | | 7+11.x=73 | | 4.x+3=67 | | 3(2x+3)=-5(4x-5)-3x | | 15x+15=3x+75 | | -4x+8=-2x+3 | | 100/(x^2+12)=0 | | (x^2)^2=324 | | 5x^2+7=60 | | 512^(5x−1)=(1/8)−4−x | | $34-26x=18$ | | 3(v-6)=18 | | 3(5x+3)=-2(3x-5)-3x | | 5125x−1=(18)−4−x5125x−1=(18)−4−x | | 5(5x+1)=-5(3x-5)-3x | | 2x+1+x–5=95. |